Phonon Transport and Thermal Conductivity Percolation in Random Nanoparticle Composites

نویسندگان

  • Weixue Tian
  • Ronggui Yang
چکیده

In this paper, we investigated the effective thermal conductivity of three dimensional nanocomposites composed of randomly distributed binary nanoparticles with large differences (contrast ratio) in their intrinsic (bulk) thermal conductivity. When random composites are made from particles with very different thermal conductivity (large contrast ratio), a continuous phase of high thermal conductivity constituent is formed when its volumetric concentration reaches beyond the percolation threshold. Such a continuous phase of material can provide a potentially low resistance pathway for thermal transport in random composites. The percolation theory predicts the thermal conductivity of the random composites to increase according to a scaling law with increasing concentration of the high thermal conductivity constituent after percolation. However, when the characteristic size of the particles in the nanocomposites is comparable to or smaller than the phonon mean free path, the phonon scattering at interfaces between two materials can introduce significant thermal resistance in the highly conductive phonon pathway. Such interfacial thermal resistance can reduce the thermal conductivity of the nanoparticle composites. The thermal conductivity of the random nanoparticle composites thus deviates significantly from the predictions of the percolation theory. In this study, the Monte Carlo simulation was employed to generate random distribution of nanoparticles and to simulate the phonon transport in random nanoparticle composites. The effects of particle size, thermal conDepartment of Mechanical Engineering, University of Colorado, Boulder, CO, USA, currently at Caterpillar Champaign Simulation Center, Champaign, IL, USA Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA, Email: [email protected] ductivity contrast ratio, and the phonon-interface scattering characteristics on the effective thermal conductivity of random nanoparticle composites are scrutinized. The effective thermal conductivity of the random nanoparticle composites are mainly controlled by the interface density (interfacial area per unit volume) in the composites. The percolating pathway formed by the high thermal conductivity constituents is not as effective in improving the thermal conductivity of the random nanoparticle composites for a wide range of volumetric concentrations compared to a random composite with larger particle dimensions. Similarly, the thermal conductivity contrast ratio of the constituents only plays a limited role in determining the thermal conductivityof the composites studied. This study can be important in studying flexible thermoelectric materials and thermal interface materials. Keyword: nanocomposite, thermal conductivity, percolation theory, phonon transport, Monte Carlo simulation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the lack of thermal percolation in carbon nanotube composites

Recent experiments demonstrated very low percolation thresholds for carbon nanotube composites signified by steep increases in electrical conductivity at very low nanotube loadings. By contrast, thermal transport measurements, even on the same samples, showed no signature of the percolation threshold. These contrasting behaviors are particularly intriguing considering that both transport proces...

متن کامل

(RETRACTED PAPER) Survey of Thermal Conductivity Carbon Nanotubes(TCCN) The Publisher and Editor retract this article based on the Publication Ethics

(RETRACTED PAPER) The Publisher and Editor retract this article based on the Publication Ethics In this project,Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented ...

متن کامل

Through-Thickness Thermal Conductivity Prediction Study on Nanocomposites and Multiscale Composites

In this research, a modeling and experimental study was conducted to explore the effects of nanoparticle type (aluminum nanoparticles and carbon nanotubes), filler concentration and interactions between the nanoparticle and reinforcing fibers on through-thickness conductivity of nanoparticle/epoxy nanocomposites and nanoparticle/fiber-reinforced multiscale composites. Multiple, notable micromec...

متن کامل

Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CN...

متن کامل

Transport studies in graphene-based materials and structures

Hu, Jiuning Ph.D., Purdue University, May 2015. Transport studies in graphenebased materials and structures. Major Professor: Yong P. Chen. Graphene, a single atomic layer of graphite, has emerged as one of the most attractive materials in recent years for its many unique and excellent properties, inviting a broad area of fundamental studies and applications. In this thesis, we present some the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008